精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx(sinx+cosx).
(1)求函数f(x)的最小正周期和最大值.
(2)求y=f(x)在R上的单调区间.
分析:首先分析函数表达式f(x)=2sinx(sinx+cosx),不是三角函数的标准型,需要化简为标准型,再根据周期公式直接求解.然后根据sinx函数的单调区间列出关系式求解f(x)的单调区间即可.
解答:解:(Ⅰ)f(x)=2sin2x+2sinxcosx=1-cos2x+sin2x=1+
2
(sin2xcos
π
4
-cos2xsin
π
4
)=1+
2
sin(2x-
π
4
)

所以函数f(x)的最小正周期为π,最大值为1+
2

(Ⅱ)由2kπ-
π
2
≤2x-
π
4
≤2kπ+
π
2
(k∈Z)

kπ-
π
8
≤x≤kπ+
8
(k∈Z)

2kπ+
π
2
≤2x-
π
4
≤2kπ+
2
(k∈Z)

kπ+
8
≤x≤kπ+
8
(k∈Z)

所以,单调增区间[kπ-
π
8
,kπ+
8
](k∈Z)
;单调减区间[kπ+
8
,kπ+
8
](k∈Z)
点评:此题主要考查三角函数周期性最值和单调区间的求法,此类题目求解时候注意要先把三角函数表达式化为标准形式再求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案