精英家教网 > 高中数学 > 题目详情

【题目】某景区欲建造同一水平面上的两条圆形景观步道(宽度忽略不计),已知(单位:米),要求圆分别相切于点分别相切于点,且.

1)若,求圆、圆的半径(结果精确到米);

2)若景观步道的造价分别为每米千元、千元,如何设计圆、圆的大小,使总造价最低?最低总造价为多少(结果精确到千元)?

【答案】1)圆、圆的半径分别为米、米;

2的半径与圆的半径分别为米与米时,总造价最低,最低总造价为千元.

【解析】

1)直接利用锐角三角函数的定义可计算出两圆的半径;

2)设,可得,其中,然后得出总造价(千元)关于的函数表达式,并利用基本不等式可求出的最小值,利用等号成立求出对应的的值,即可计算出两圆的半径长.

1)依题意,圆的半径(米),

的半径(米)

答:圆、圆的半径分别为米、米;

2)设,则,其中

故景观步道的总造价为.

(当且仅当时取等号),

时,

答:设计圆的半径与圆的半径分别为米与米时,总造价最低,最低总造价为(千元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数),将曲线上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线;以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线和直线的直角坐标方程;

2)已知,设直线与曲线交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是双曲线的左、右焦点,过斜率为的直线交双曲线的左、右两支分别于两点,过且与垂直的直线交双曲线的左、右两支分别于两点.

1)求的取值范围;

(2)求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了我运动,我健康,我快乐的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):

1)求高一、高二两个年级各有多少人?

2)设某学生跳绳/分钟,踢毽/分钟.,且时,称该学生为运动达人”.

①从高二年级的学生中任选一人,试估计该学生为运动达人的概率;

②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为运动达人的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,中国有三分之二的城市面临垃圾围城的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 202051日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50.

现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:

小区

小区

小区

小区

小区

废纸投放量(吨)

5

5.1

5.2

4.8

4.9

塑料品投放量(吨)

3.5

3.6

3.7

3.4

3.3

(Ⅰ)从5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;

(Ⅱ)从5个小区中任取2个小区,记12月份投放的废纸可再造好纸超过4吨的小区个数,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的定义域D,并判断的奇偶性;

2)如果当时,的值域是,求a的值;

3)对任意的m,是否存在,使得,若存在,求出t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PCDEAD的中点,ACBE相交于点O.

1)证明:平面ABCD.

2)求直线BC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:

愿意购买该款手机

不愿意购买该款手机

总计

40岁以下

600

40岁以上

800

1000

总计

1200

1)根据图中的数据,试估计该款手机的平均使用时间;

2)请将表格中的数据补充完整,并根据表中数据,判断是否有999%的把握认为愿意购买该款手机市民的年龄有关.

参考公式:,其中

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案