精英家教网 > 高中数学 > 题目详情
1.已知等差数列{an}的首项为a,公差为d,且不等式ax2-3x+2<0的解集为(1,d).
(1)求数列{an}的通项公式an
(2)若bn=3an+an-1,求数列{bn}前n项和Tn

分析 (1)根据利用根与系数的关系求出a,d,代入等差数列的通项公式即可;
(2)使用分组法把Tn转化为等差数列,等比数列的前n项和计算.

解答 解:(1)∵不等式ax2-3x+2<0的解集为(1,d).
∴$\left\{\begin{array}{l}{1+d=\frac{3}{a}}\\{d=\frac{2}{a}}\\{a>0}\end{array}\right.$,解得a=1,d=2.
∴an=2n-1;
(2)由(I)知bn=32n-1+2n-2,
∴Tn=(3+33+35+…+32n-1)+(2+4+6+8+…+2n)-2n
=$\frac{3(1-{9}^{n})}{1-9}$+$\frac{2+2n}{2}×n$-2n=$\frac{3({9}^{n}-1)}{8}$+n2-n.

点评 本题考查了方程与不等式的关系,等差数列,等比数列的求和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,输出的结果为(  )
A.34B.55C.89D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|<$\frac{π}{2}$在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(1)请求出上表中的x1,x2,x3,并直接写出函数f(x)的解析式;
(2)若3sin2$\frac{x}{2}$-$\sqrt{3}$mf($\frac{x}{π}$-$\frac{2}{3}$)≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若alog34=1,则2a+2-a═$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知{an}是公差为4的等差数列,Sn是其前n项和.若S5=15,则a10的值是(  )
A.11B.20C.29D.31

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}满足:a1•a2•a3…an=n2(n∈N*),则通项公式是:an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{{n}^{2}}{(n-1)^{2}},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,如果输入的x值是407,y值是259,那么输出的x值是(  )
A.2849B.37C.74D.77

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是某几何体的三视图,图中圆的半径均为1,且俯视图中两条半径互相垂直,则该几何体的体积为(  )
A.2+πB.$\frac{4}{3}$πC.$\frac{3}{2}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若$A=\frac{π}{3},tanB=\frac{1}{2},AB=2\sqrt{3}+1$,则BC=$\sqrt{15}$.

查看答案和解析>>

同步练习册答案