精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1棱长为a,则点C1到平面A1BD的距离是(  )
A.
2
2
a
B.
3
3
a
C.
3
a
D.
2
3
3
a
构造三棱锥C1-A1DB,其体积为:
∵V=V正方体-4V A-A1BD=a3-4×
1
6
a3=
1
3
a3
设点C1到平面A1BD的距离是h,
又三棱锥C1-A1DB的体积=
1
3
×SA1BD×h,
1
3
a3=
1
3
×SA1BD×h,
∴h=
2
3
a
3

则点C1到平面A1BD的距离是
2
3
a
3

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

互不重合的三个平面最多可以把空间分成(   )个部分
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知矩形ABCD中,AB=1,PA⊥平面ABCD,若在BC上有且仅有一个点Q满足PQ⊥DQ,则BC的长是(  )
A.
3
B.
2
C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平行六面体ANCD-EFGH中,棱AB,AD,AE的长分别为3,4,5,∠EAD=∠EAB=∠DAB=120°,则AG的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

底面是矩形的四棱柱ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则AC′=(  )
A.
95
B.
59
C.
85
D.
58

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,则点D到平面ACD1的距离是(  )
A.
1
2
B.
3
2
C.
6
2
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD,PA⊥平面ABCD,且PA=4,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=
2
,M,N分别为PD,PB的中点,平面MCN与PA交点为Q.
(Ⅰ)求PQ的长度;
(Ⅱ)求截面MCN与底面ABCD所成二面角的正弦值;
(Ⅲ)求点A到平面MCN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面ACD⊥平面α,B为AC的中点,AC=2,∠CBD=60°,P是α内的动点,且P到直线BD的距离为
3
,则△APC面积的最大值为(  )
A.2
3
B.
3
+
2
C.2D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体ABCD中,平面EFGH分别平行于棱CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.
(1)求证:四边形EFGH是矩形.
(2)设
DE
DB
=λ(0<λ<1)
,问λ为何值时,四边形EFGH的面积最大?

查看答案和解析>>

同步练习册答案