精英家教网 > 高中数学 > 题目详情

【题目】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为ABCD四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25/件,乙分厂加工成本费为20/.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:

甲分厂产品等级的频数分布表

等级

A

B

C

D

频数

40

20

20

20

乙分厂产品等级的频数分布表

等级

A

B

C

D

频数

28

17

34

21

1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;

2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?

【答案】1)甲分厂加工出来的级品的概率为,乙分厂加工出来的级品的概率为;(2)选甲分厂,理由见解析.

【解析】

1)根据两个频数分布表即可求出;

2)根据题意分别求出甲乙两厂加工件产品的总利润,即可求出平均利润,由此作出选择.

1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为

2)甲分厂加工件产品的总利润为元,

所以甲分厂加工件产品的平均利润为元每件;

乙分厂加工件产品的总利润为

元,

所以乙分厂加工件产品的平均利润为元每件.

故厂家选择甲分厂承接加工任务.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的内角ABC所对的边分别是abc,其面积S

1)若ab,求cosB

2)求sinA+B+sinBcosB+cosBA)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是自然对数的底数,,已知函数.

1)若函数有零点,求实数的取值范围;

2)对于,证明:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆C.

1)求圆C的方程;

2)若圆C与直线交于AB两点,且,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为2,平面过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面内的正投影面积是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为

1)求甲连胜四场的概率;

2)求需要进行第五场比赛的概率;

3)求丙最终获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,MN分别为BCB1C1的中点,PAM上一点.过B1C1P的平面交ABE,交ACF

1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F

2)设O为△A1B1C1的中心,若AO=AB=6AO//平面EB1C1F,且∠MPN=,求四棱锥BEB1C1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点且椭圆的短轴长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知动直线过右焦点,且与椭圆分别交于两点.试问轴上是否存在定点,使得,恒成立?若存在求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义城为R的函数,若满足:①;②当,且时,都有;③当时,都有,则称偏对称函数”.下列函数是偏对称函数的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案