精英家教网 > 高中数学 > 题目详情
判定点M1(1,-2),M2(-2,6)是否在函数y=1-3x的图象上.
考点:直线的一般式方程
专题:直线与圆
分析:分别把点的坐标代入函数解析式可得结论.
解答: 解:把M1(1,-2)的坐标代入函数y=1-3x可知适合函数解析式,
把M2(-2,6)的坐标代入函数y=1-3x可知不适合函数解析式,
∴M1(1,-2)在函数y=1-3x的图象上,M2(-2,6)不在函数y=1-3x的图象上
点评:本题考查直线的方程,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0.
(1)若直线l与圆C没有公共点,求m的取值范围;
(2)若直线l与圆C相交于P、Q两点,O为原点,且以PQ为直径的圆过原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin2x的图象为C,问:需要经过怎样的平移变换得到函数y=cos(2x-
7
4
π)的图象C,并使平移的路程最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆M与直线y=3相切,且过定点F(0,-3),
(1)求动圆圆心M的轨迹方程G;
(2)经过点F(0,-3)的直线交(1)中曲线G于A,B两点,证明:
1
|AF|
+
1
|BF|
=
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x+y=0,则以与点(-2,0)关于直线l对称的点为圆心,且与直线l相切的圆的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F1(x)=e|x-1|,F2(x)=e 
x
3
+1
,g(x)=
F1(x)+F2(x)
2
+
|F1(x)-F2(x)|
2
,若a,b∈[-1,5],且当x1、x2∈[a,b]时,
g(x1)-g(x2)
x1-x2
>0恒成立,则b-a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a、b、c均为正数,且a+b+c=6,则
2a
+
2b+1
+
2c+3
取最大值时,a的值为(  )
A、
7
3
B、
7
6
C、
13
6
D、
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1),
b
=(sinx,cosx),x∈(0,
π
2
).
(1)若
a
b
,求x的值;
(2)若函数f(x)=
a
b
,当x为何值时,f(x)取得最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
2
,an+1=an-
3n
2n+1
(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Tn
(3)试比较Tn
3n
2n+1
的大小.

查看答案和解析>>

同步练习册答案