精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn2Sn+2nan+12a28,其中nN*.

1)记bnan+1,求证:{bn}是等比数列;

2)设为数列{cn}的前n项和,若不等式kTn对任意的nN*恒成立,求实数k的取值范围.

【答案】1)见解析;(2

【解析】

1)求得首项,运用数列的递推式,结合等比数列的定义,即可得证;

2)运用等比数列的通项公式,可得c()n,由数列的错位相减法可得 ,结合不等式恒成立思想可得k的范围.

(1)证明:

n1时,,解得a12

n≥2,可得

两式相减可得

即有

可得

即有{bn}是首项和公比为3的等比数列;

(2)cn

12n

n12n+1

两式相减可得nnn+1

n+1

化简可得

可得

不等式kTn对任意的nN*恒成立,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线轴,轴分别交于,线段的中垂线与抛物线有两个不同的交点

1)求的取值范围;

2)是否存在,使得四点共圆,若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为,其范围为,分别有五个级别:畅通;基本畅通;轻度拥堵;中度拥堵;严重拥堵.晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.

(Ⅰ)用分层抽样的方法从交通指数在的路段中共抽取个路段,求依次抽取的三个级别路段的个数;

(Ⅱ)从(Ⅰ)中抽出的个路段中任取个,求至少有个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求fx)的最小正周期和单调递减区间;

(Ⅱ)将函数fx)的图象向右平移个单位,得到函数gx)的图象,求gx)在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以为焦点的抛物线过点,直线交于两点,中点,且.

1)当时,求点的坐标;

2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C2的极坐标方程为ρ2sinθ.

1)探究直线l与曲线C2的位置关系,并说明理由;

2)若曲线C3的极坐标方程为,且曲线C3与曲线C1C2分别交于MN两点,求|OM|2|ON|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右焦点到渐近线的距离为3.现有如下条件:①双曲线的离心率为 ②双曲线与椭圆共焦点; ③双曲线右支上的一点的距离之差是虚轴长的.

请从上述3个条件中任选一个,得到双曲线的方程为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,则实数a的取值范围是(  )

A. [e,+∞)B. [,+∞)

C. [,e2)D. [e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,以为圆心椭圆的长半轴为半径的圆与轴的交点分别为

(1)求椭圆的标准方程;

(2)设不经过点的直线与椭圆交于两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案