精英家教网 > 高中数学 > 题目详情
已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=
2x2x+1

(1)证明函数f(x)在(0,1)是增函数
(2)求f(x)在(-1,1)上的解析式.
分析:(1)利用函数单调性的定义证明函数的单调性,先在区间上任取两一定大小的值,再通过作差法比较两值对应函数值的大小,最后判断单调性;(2)先求函数在(-1,0)上的解析式,利用奇函数的定义和已知解析式即可,再求f(0),最后将定义域上的函数的解析式写成分段函数
解答:解:①任取0<x1<x2<1,
f(x1)-f(x2)=
2x1
2x1+1
-
2x2
2x2+1
=
2x1-2x2
(2x1+1)(2x2+1)

∵0<x1<x2<1
2x12x2
2x1+1>02x2+1>0
∴f(x1)<f(x2
∴f(x)在(0,1)上是增函数
②当x∈(-1,0)时,-x∈(-1,0)
f(x)=-f(-x)=-
1
2x+1

当x=0时,f(x)=0
f(x)=
2x
2x+1
 
0
-
1
2x+1
0<x<1
 
x=0
-1<x<0
点评:本题考查了函数单调性的定义及其证明方法,函数的奇偶性及其应用,利用对称性求函数的解析式的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则(  )
A、f(2)>e2f(0),f(2010)>e2010f(0)B、f(2)<e2f(0),f(2010)>e2010f(0)C、f(2)>e2f(0),f(2010)<e2010f(0)D、f(2)<e2f(0),f(2010)<e2010f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2013)+f(-2014)的值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
f(x)=
4-x2
+
x2-4
既是奇函数,又是偶函数;
②f(x)=x和f(x)=
x2
x
为同一函数;
③已知f(x)为定义在R上的奇函数,且f(x)在(0,+∞)上单调递增,则f(x)在(-∞,+∞)上为增函数;
④函数y=
x
2x2+1
的值域为[-
2
4
2
4
]

其中正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则当x<0时,有(  )
A、f(x)=-x(1+x)B、f(x)=-x(1-x)C、f(x)=x(1-x)D、f(x)=x(x-1)

查看答案和解析>>

同步练习册答案