精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
设函数
(1)若函数内没有极值点,求的取值范围。
(2)若对任意的,不等式上恒成立,求实数的取值范围。
(Ⅰ)   (Ⅱ)
(1)由题设可知,方程   1分
[-1,1]在上没有实数根,         4分
解得     6分
(2)                 又       7分
时,;    当时,
函数的递增区间为
单调递减区间为  9分当
     10分

在[-2,2]上恒成立,         
上恒成立。      11分
的最小值为-87,   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处的切线与直线垂直,求的值
(2)证明:对于任意的,都存在,使得成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的最大值为M。
(1)当时,求M的值。
(2)当取遍所有实数时,求M的最小值
(以下结论可供参考:对于,当同号时取等号)
(3)对于第(2)小题中的,设数列满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

m为实数,函数 .
(1)若≥4,求m的取值范围;
(2)当m>0时,求证上是单调递增函数;
(3)若对于一切,不等式≥1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数a的值,并判断上的单调性;
(2)若数列满足
(3)在(2)的条件下,

求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
(1)若h(x)=f(x)-g(x)存在单调增区间,求a的取值范围;
(2)是否存在实数a>0,使得方程在区间内有且只有两个不相等的实数根?若存在,求出a的取值范围?若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若为大于0的常数),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若的取值范围;
(2)若的图象与的图象恰有3个交点?若存在求出的取值范围;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是偶函数,当时.(a为实数).
(1)若处有极值,求a的值。(6分)
(2)若上是减函数,求a的取值范围。(8分)

查看答案和解析>>

同步练习册答案