【题目】已知数列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m与n无关),若 a2i﹣1≤k2﹣2k﹣1对一切m∈N*恒成立,则实数k的取值范围为 .
科目:高中数学 来源: 题型:
【题目】下列命题中,是假命题的是( )
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
频数 | 60 | 20 | 10 | 5 | 5 |
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C: =1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ= ,且 |,则双曲线C的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为2:3;5,现从该学校中抽取一个容量为100的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为 ,则该学校学生的总数为( )
A.200
B.400
C.500
D.1000
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于点(3,0). (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命题p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1为假命题,求实数c的取值范围;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是与x无关的负数),判断函数h(x)有几个不同的零点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)经过点( ,1),以原点为圆心,椭圆短半轴长为半径的圆经过椭圆的焦点.
(1)求椭圆C的方程;
(2)设过点(﹣1,0)的直线l与椭圆C相交于A、B两点,试问在x轴上是否存在一个定点M,使得 恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)<g(x)的解集为 ,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}中,已知a3=5,且a1 , a2 , a5为递增的等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的通项公式 (k∈N*),求数列{bn}的前n项和Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com