已知函数
(1)求函数的定义域和值域;(2)若函数有最小值为,求的值。
(1)定义域为,当时,值域为,当时,值域为;
(2)
解析试题分析:(1)根据对数函数的定义域为,则由函数,可得,解之得,从而可得所求函数的定义域为;根据对数函数当时为单调递增函数,当时为单调递减函数,又由复合函数的“同增异减”性质(注:两个复合函数的单调性相同时复合函数为单调递增,不同时复合函数为单调递减),可将函数对其底数分为与两情况进行分类讨论,从而求出函数的值域;(2)由(1)知当时函数有最小值,从而有,可解得.
试题解析:(1)由已知得,解之得,故所求函数的定义域为.
原函数可化为,设,又,所以.
当时,有;当时, .
故当时,函数的值域为,当时,值域为.
(2)由题意及(1)知:当时,函数有最小值,即,可解得.
考点:对数函数的定义域、值域、单调性、最值
科目:高中数学 来源: 题型:解答题
已知实数,函数.
(1)当时,求的最小值;
(2)当时,判断的单调性,并说明理由;
(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3+ax-2,(aR).
(l)若f(x)在区间(1,+)上是增函数,求实数a的取值范围;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是减函数,求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线.
(Ⅰ)写出第一次服药后与之间的函数关系式;
(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据:).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
湖南省环保研究所对长沙市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻x的关系为,其中a是与气象有关的参数,且,若用每天的最大值作为当天的综合放射性污染指数,并记作.
(Ⅰ)令,求t的取值范围;
(Ⅱ)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com