精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1+a4=3,a6=5.
(1)求数列{an}的通项公式;
(2)如果bn=2an,求数列{bn}的前10项的和S10
(1)根据题意,得
2a1+3d=3
a1+5d=5
(1分)
解得
a1=0
d=1
(3分)
所以数列{an}的通项公式为an=a1+(n-1)d=n-1.(5分)
(2)由an=n-1,得bn=2n-1.所以S10=20+21+22+…+29=
1-210
1-2
=1023.(8分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案