【题目】已知函数f(x)=a(x+ )+blnx(其中a,b∈R)
(Ⅰ)当b=﹣4时,若f(x)在其定义域内为单调函数,求a的取值范围;
(Ⅱ)当a=﹣1时,是否存在实数b,使得当x∈[e,e2]时,不等式f(x)>0恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…).
【答案】解:(Ⅰ)函数f(x)的定义域是(0,+∞),
f′(x)= ,
若f(x)在其定义域内递增,
则a≥ = =1,
故a≥1,
若若f(x)在其定义域内递减,
则a≤ = ,
x+ →+∞时, →0,
故a≤0;
综上,a≤0或a≥1;
(Ⅱ)f(x)=﹣(x+ )+blnx>0在x∈[e,e2]时恒成立,
即b> 在x∈[e,e2]时恒成立,
令h(x)= ,x∈[e,e2],
h′(x)= ,
令 =t,则t∈[ , ],
∴ + =t2+2t∈[ + , + ],
∴lnx﹣( + )>0,h′(x)>0恒成立,
h(x)在[e,e2]递增,
∴h(x)max=h(e2)=
∴b>
【解析】(Ⅰ)求出函数的导数,问题转化为则a≥ ,或a≤ ,求出a的范围即可;(Ⅱ)问题转化为b> 在x∈[e,e2]时恒成立,令h(x)= ,x∈[e,e2],根据函数的单调性求出b的范围即可.
【考点精析】利用利用导数研究函数的单调性和函数的最大(小)值与导数对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2, )对应的参数φ= .θ= 与曲线C2交于点D( , ).
(1)求曲线C1 , C2的直角坐标方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲线C1上的两点,求 + 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.
(1)求证:MN∥平面PAD.
(2)若PA=AD=2a,MN与PA所成的角为30°.求MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数F(x)=xf(x),f(x)满足f(x)=f(﹣x),且当x∈(﹣∞,0]时,F'(x)<0成立,若 ,则a,b,c的大小关系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.点E是棱PC的中点,平面ABE与棱PD交于点F. (Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF与平面AEF所成的二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角三角形ABC 中,角 A,B,C 的对边分别为 a,b,c.若a=2bsinC,则tanA+tanB+tanC的最小值是( )
A.4
B.
C.8
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以双曲线 (a>0,b>0)上一点M为圆心的圆与x轴恰相切于双曲线的一个焦点F,且与y轴交于P、Q两点.若△MPQ为正三角形,则该双曲线的离心率为( )
A.4
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com