精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)上有一点Q(2,y0)到焦点F的距离为
52

(Ⅰ)求p及y0的值;
(Ⅱ)如图,设直线y=kx+b与抛物线交于两点A(x1,y1),B(x2,y2),且|y1-y2|=2,过弦AB的中点M作垂直于y轴的直线与抛物线交于点D,连接AD,BD.试判断△ABD的面积是否为定值?若是,求出定值;否则,请说明理由.
分析:(I)由抛物线C:y2=2px(p>0),可得焦点,利用弦长公式可得p.把点Q(2,y0)代入抛物线方程可得y0
(II)把直线的 方程与抛物线方程联立可得△>0及根与系数的关系,再利用三角形的面积公式即可得出.
解答:解:(I)由抛物线C:y2=2px(p>0),可得焦点(
p
2
,0)

∵抛物线上的点Q(2,y0)到焦点F的距离为
5
2

2+
p
2
=
5
2
,p=1.
∴y2=2x,
把Q(2,y0)代入抛物线方程,解得y0=±2.
(II)联立
y=kx+b
y2=2x
,得:k2x2+2(kb-1)x+b2=0(k≠0),△>0,即1-2kb>0,
x1+x2=
2(1-kb)
k2
x1x2=
b2
k2

|y1-y2|2=k2|x1-x2|2=k2[(x1+x2)2-4x1x2]=
4(1-2kb)
k2
=4

∴1-2kb=k2
M(
1-kb
k2
1
k
)
D(
1
2k2
1
k
)

∴△ABC的面积S=
1
2
|MD|•|y1-y2|=
1
2
×|
1-2kb
2k2
|×2=
1
2
点评:本题综合考查了抛物线的标准方程及其性质、弦长公式、直线与抛物线相交问题转化为△>0及根与系数的关系、三角形的面积计算公式等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案