精英家教网 > 高中数学 > 题目详情

已知圆.
(1)若圆的切线在轴和轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆外一点向该圆引一条切线,切点为为坐标原点,且有,求使的长取得最小值的点的坐标.

(1);(2)

解析试题分析:(1)根据题意可设切线方程为),然后利用圆心到切线的距离等于半径即可求出的值,进而求出切线方程;
(2)通过为切线,可知,可以得到点的轨迹方程,然后将求的最小值问题转化为求的最小值,利用点到直线的距离易得.
试题解析:(1)切线在两坐标轴上的截距相等且截距不为零,
∴设切线方程为),
圆C:
∴圆心C到切线的距离等于圆的半径
,解得
故所求切线的方程为:
(2)设
切线与半径垂直,

,整理得
故动点在直线上,
由已知的最小值就是的最小值,
的最小值为到直线的距离
解得
∴所求点坐标为
考点:1.直线与圆的位置关系;2.圆的切线问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆心为C的圆经过点,且圆心C在直线上,求圆心为C的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,

M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当PQ=2时,求直线l的方程;
(3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

内有一点为过点且倾斜角为的弦.

(1)当时,求
(2)当弦被点平分时,求出直线的方程;
(3)设过点的弦的中点为,求点的坐标所满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系.
(2)求线段PQ长的最小值.
(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知圆x2y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点AB.
(1)求圆Q的面积;
(2)求k的取值范围;
(3)是否存在常数k,使得向量共线?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若,试求点的坐标;
(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

同步练习册答案