精英家教网 > 高中数学 > 题目详情

内有一点为过点且倾斜角为的弦.

(1)当时,求
(2)当弦被点平分时,求出直线的方程;
(3)设过点的弦的中点为,求点的坐标所满足的关系式.

(1);(2);(3)

解析试题分析:(1)通过倾斜角先求出直线的方程,然后利用特征三角形求解;
(2)由题意知直线与直线垂直,故斜率之积为,可通过的斜率求出的斜率,进而写出直线的方程;
(3)通过由三点构成的直角三角形,利用勾股定理即可求解.
试题解析:(1)过点,连结,当时,直线的斜率为,故直线的方程,∴
又∵,∴,∴
(2)当弦平分时,,此时
的点斜式方程为,即.
(3)设的中点为,则△为直角三角形,故
,整理得.
考点:1.弦所在直线方程的求解;2.弦长问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点是直线上一动点,是圆C:的两条切线,A、B是切点,若四边形的最小面积是2,则的值为?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一动圆截直线和直线所得弦长分别为,求动圆圆心的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若圆的切线在轴和轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆外一点向该圆引一条切线,切点为为坐标原点,且有,求使的长取得最小值的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2xy-4=0与圆C交于点MN,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设PQ分别是直线lxy+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为.

(Ⅰ)求证:三点共线;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.

查看答案和解析>>

同步练习册答案