精英家教网 > 高中数学 > 题目详情

一动圆截直线和直线所得弦长分别为,求动圆圆心的轨迹方程。

解析试题分析:设动圆圆心为M,由动圆截两直线所得的弦长,结合点到直线的距离公式,根据半径相等列关于动圆圆心坐标的关系式,整理后得答案.
试题解析:设动圆圆心点的坐标为分别截直线
所得弦分别为,则
,过分别作直线的垂线,垂足分别为,则
, ,所以动圆圆心的轨迹方程是.
考点:轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆G:+y2=1.过轴上的动点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.
(1)求椭圆G上的点到直线的最大距离;
(2)①当实数时,求A,B两点坐标;
②将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,点,直线.
 
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

内有一点为过点且倾斜角为的弦.

(1)当时,求
(2)当弦被点平分时,求出直线的方程;
(3)设过点的弦的中点为,求点的坐标所满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系.
(2)求线段PQ长的最小值.
(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为2,圆心在直线上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.

查看答案和解析>>

同步练习册答案