精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.

(1)x2+y2-2x+2y-3=0(2)

解析试题分析:(1)曲线y=x2-2x-3与坐标轴的交点有三个交点,本题就是求过三个点的圆的方程,因此设圆方程的一般式x2+y2+Dx+Ey+F=0,若从图形看,则圆的方程又可设成x2+y2-2x+Ey-3=0,再利用过点求出(2)先将圆的一般式化为标准式:,明确圆心和半径,涉及圆的弦长问题,利用由半径、半弦长、圆心到弦所在直线距离构成的直角三角形,列等量关系:
试题解析:(1)曲线与y轴的交点是(0,-3).令y=0,得x2-2x-3=0,解得x=-1或x=3.
即曲线与x轴的交点是(-1,0),(3,0).                    2分
设所求圆C的方程是x2+y2+Dx+Ey+F=0,
,解得D=-2,E=2,F=-3.
所以圆C的方程是x2+y2-2x+2y-3=0.                  5分
(2)圆C的方程可化为
所以圆心C(1,-1),半径.                           7分
圆心C到直线x+y+a=0的距离,由于
所以,解得.                    10分
考点:圆的一般式方程,圆的弦长

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知D为△ABC的BC边上一点,⊙O1经过点B、D交AB于另一点E,⊙O2经过点C、D交AC于另一点F,⊙O1与⊙O2交于点G.

(1)求证:∠EAG=∠EFG;
(2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆经过点,且圆心在直线上.
(1)求圆的方程;
(2)设点在圆上,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程:,其中
(1)若圆C与直线相交于,两点,且,求的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若圆的切线在轴和轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆外一点向该圆引一条切线,切点为为坐标原点,且有,求使的长取得最小值的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点为坐标平面内的动点,满足
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,轴上的一动点,试讨论直线
与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1xy+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在直线上,且与直线相切于点.
(Ⅰ)求圆方程;
(Ⅱ)点与点关于直线对称.是否存在过点的直线与圆相交于两点,且使三角形为坐标原点),若存在求出直线的方程,若不存在用计算过程说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.

查看答案和解析>>

同步练习册答案