精英家教网 > 高中数学 > 题目详情

已知圆的方程:,其中
(1)若圆C与直线相交于,两点,且,求的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.

(1)  ;(2) .

解析试题分析:(1)将圆的方程化为标准方程,求出圆心到直线的距离,利用 ,求出值;(2) 圆上有四点到直线的距离为,即距直线的距离的两条直线与圆分别有两个交点,圆心到直线的距离,求出值.
试题解析:解:(1)圆的方程化为 ,圆心 C(1,2),半径
则圆心C(1,2)到直线的距离为     3分
由于,则,有
.                      6分
(2)假设存在直线,使得圆上有四点到直线的距离为,    7分
由于圆心 C(1,2),半径, 则圆心C(1,2)到直线的距离为
,              10分
解得.                        13分
考点:1.圆的方程;2.圆心到直线的距离;3.弦心距公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在圆上任取一点,过点轴的垂线段为垂足.设为线段的中点.
(1)当点在圆上运动时,求点的轨迹的方程;
(2)若圆在点处的切线与轴交于点,试判断直线与轨迹的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在圆上运动,,点为线段MN的中点.
(1)求点的轨迹方程;
(2)求点到直线的距离的最大值和最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知t∈R,圆C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圆C的圆心在直线x-y+2=0上,求圆C的方程;
(2)圆C是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0.
(2)若四边形ABCD的面积为8,对角线AC的长为2,且·=0,求D2+E2-4F的值.
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1xy+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知是椭圆的右焦点;圆轴交于两点,其中是椭圆的左焦点.

(1)求椭圆的离心率;
(2)设圆轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;
(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.

查看答案和解析>>

同步练习册答案