如图,已知是椭圆的右焦点;圆与轴交于两点,其中是椭圆的左焦点.
(1)求椭圆的离心率;
(2)设圆与轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;
(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.
(1);(2)相切;(3).
解析试题分析:(1)将点代入圆的方程,得出与的等量关系,进而求出椭圆的离心率;(2)先求出点、的坐标,进而求出直线的斜率,通过直线的斜率与直线的斜率的乘积为,得到,进而得到直线与圆的位置关系;(3)通过为的中位线得到与的面积,从而求出的值,进而求出与的值,从而确定椭圆的标准方程.
试题解析:(1)圆过椭圆的左焦点,把代入圆的方程,得,
故椭圆的离心率;
(2)在方程中令得,可知点为椭圆的上顶点,
由(1)知,,故,,故,
在圆的方程中令可得点坐标为,则点为,
于是可得直线的斜率,而直线的斜率,
,直线与圆相切;
(3)是的中线,,
,从而得,,椭圆的标准方程为.
考点:1.椭圆的离心率;2.直线与圆的位置关系;3.椭圆的方程
科目:高中数学 来源: 题型:解答题
已知圆的方程:,其中.
(1)若圆C与直线相交于,两点,且,求的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若,试求点的坐标;
(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆心为点的圆与直线相切.
(1)求圆的标准方程;
(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:以点C(t,)(t∈R,t≠0)为圆心的圆与轴交于点O,A,与y轴交于点O,B,其中O为原点
(1)求证:△OAB的面积为定值;
(2)设直线y=–2x+4与圆C交于点M,N,若OM=ON,求圆C的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的圆心在直线上,且与直线相切于点.
(Ⅰ)求圆方程;
(Ⅱ)点与点关于直线对称.是否存在过点的直线,与圆相交于两点,且使三角形(为坐标原点),若存在求出直线的方程,若不存在用计算过程说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆:.
(Ⅰ)若圆与轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.
(Ⅰ)求k的取值范围;
(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com