精英家教网 > 高中数学 > 题目详情

关于xi(i=1,2,…,10)的方程x1+2x2+x3+x4+…+x10=3的非负整数解的组数为


  1. A.
    174
  2. B.
    172
  3. C.
    165
  4. D.
    156
A
分析:本题是一个分类计数问题,若x2=1,则x1,x3,x4,…,x10中有一个为1,其余为0,这种情况有C91组解;若x2=0,则x1,x3,x4,…,x10中可以有一个为3,其余为0,也可有一个为2,一个为1,其余为0,还可有三个为1,其余为0,写出结果.
解答:由题意知本题是一个分类计数问题,
若x2=1,则x1,x3,x4,…,x10中有一个为1,其余为0,这种情况有C91=9组解;
若x2=0,则x1,x3,x4,…,x10中可以有一个为3,其余为0,也可以有一个为2,一个为1,
其余为0,还可以有三个为1,其余为0,这些情况有C91+A92+C93=165组解,
∴原方程共有165+9=174个非负整数解.
故选A.
点评:本题考查分类计数问题,解题的关键是理解题意,能够正确的分类,抓住题目的关键即第二项的等于0和不等于0的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、关于xi(i=1,2,…,10)的方程x1+2x2+x3+x4+…+x10=3的非负整数解的组数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)由不全相等的正数xi(i=1,2,…,n)形成n个数:x1+
1
x2
x2+
1
x3
,…,xn-1+
1
xn
xn+
1
x1
,关于这n个数,下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于xi(i=1,2,…,10)的方程x1+2x2+x3+x4+…+x10=3的非负整数解的组数为(  )
A.174B.172C.165D.156

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省宜春市上高二中高二(上)第三次月考数学试卷(理科)(解析版) 题型:选择题

关于xi(i=1,2,…,10)的方程x1+2x2+x3+x4+…+x10=3的非负整数解的组数为( )
A.174
B.172
C.165
D.156

查看答案和解析>>

同步练习册答案