精英家教网 > 高中数学 > 题目详情
在正四棱柱ABCD—A1B1C1D1中,如果底面正方形ABCD的边长AB=2,侧棱AA1=,则下列四个命题:

①AA1与BC1成45°角;

②AA1与BC1的距离为2;

③二面角C1-AB-C为arctan;

④B1D⊥平面D1AC.

则正确命题的序号为______________.

②③

解:①不正确.AA1与BC1所成角为arctan.

②根据异面直线间的距离定义知AB=2即为所求.正确.

③二面角C1ABC的平面角为∠C1BC,

而tan∠C1BC=.正确.

④B1D⊥AC,而B1D不垂直AD1.

故B1D⊥面D1AC不正确.

正确命题的序号为②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,棱长AA1=2,AB=1,E是AA1的中点.
(Ⅰ)求证:A1C∥平面BDE;
(Ⅱ)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为CC1的中点.
求证:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分别为B1B和A1D的中点.
(Ⅰ)求直线MN与平面ADD1A1所成角的大小;
(Ⅱ)求二面角A-MN-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的边长为2,点P是CC1的中点,直线AP与平面BCC1B1成30°角,求异面直线BC1和AP所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)在正四棱柱ABCD-A1B1C1D1中,E为AD中点,F为B1C1中点.
(Ⅰ)求证:A1F∥平面ECC1
(Ⅱ)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案