精英家教网 > 高中数学 > 题目详情
13.过点A(3,-1)的直线被圆C:x2+y2-4x+6y+4=0所截得的弦中,最短弦所在的直线的方程是(  )
A.x+2y-1=0B.2x+y-5=0C.2x-y-7=0D.x-2y-5=0

分析 求出kAC=$\frac{-3+1}{2-3}$=2,过点A(3,-1)的直线被圆C:x2+y2-4x+6y+4=0所截得的弦中,最短弦所在的直线的方程的斜率为-$\frac{1}{2}$,由此能求出最短弦所在的直线的方程.

解答 解:圆C:x2+y2-4x+6y+4=0的圆心C(2,-3),半径r=$\frac{1}{2}\sqrt{16+36-16}$=3,
∵A(3,-1),∴|AC|=$\sqrt{(3-2)^{2}+(-1+3)^{2}}$=$\sqrt{5}$<3,
∴点A在圆C内,
∵kAC=$\frac{-3+1}{2-3}$=2,
∴过点A(3,-1)的直线被圆C:x2+y2-4x+6y+4=0所截得的弦中,
最短弦所在的直线的方程是:y+1=-$\frac{1}{2}$(x-3),即x+2y-1=0.
故选:A.

点评 本题考查直线方程的求法,考查圆、直线方程、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.自地面垂直向上发射火箭,火箭的质量为m,试计算将火箭发射到距地面的高度为h时所做的功.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{m}$=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为(  )
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{2\sqrt{2}}{3}$xD.y=±$\frac{3\sqrt{2}}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(-1,m)在直线l1:ax+y+2a=0上,且圆C:x2+y2-8y+12=0关于直线l1对称.
(1)求a、m的值;
(2)若过点P的直线l2与圆C相切,求直线l2的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,x,y∈R,证明:(a2+b2)(x2+y2)≥(ax+by)2,并利用上述结论求(sin2x+cos2x)($\frac{1}{si{n}^{2}x}$+$\frac{4}{co{s}^{2}x}$)的最小值(其中x∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y={log_2}({\frac{1}{4}{x^2}-x+a})$在x∈[1,2]上恒为负值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若圆(x-1)2+(y+1)2=r2上有且只有两个点到直线x-y+1=0的距离等于$\frac{{\sqrt{2}}}{2}$,则半径r的取值范围是(  )
A.$(\sqrt{2},2\sqrt{2}]$B.$(\sqrt{2},2\sqrt{2})$C.$[\sqrt{2},2\sqrt{2})$D.$[\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈R,则“$log_2^a>log_2^b$”是“2a-b>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x∈R,则“|x+1|<1”是“x2+x-2<0”的(  )条件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步练习册答案