精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E的中心在坐标原点O,两个焦点分别为A﹣10),B10),一个顶点为H20).

1)求椭圆E的标准方程;

2)对于x轴上的点Pt0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.

【答案】1;(2)(﹣2﹣1).

【解析】

试题(1)由两个焦点分别为A﹣10),B10),上顶点为D20),得到椭圆的半长轴a,半焦距c,再求得半短轴b

最后由椭圆的焦点在X轴上求得方程.

2)利用向量垂直即可求得M点的横坐标x0,从而解决问题.

解:(1)由题意得,c=1a=2,则b=

故所求的椭圆标准方程为

2)设Mx0y0)(x0≠±2),则

又由Pt0),H20).则

MP⊥MH可得,即(t﹣x0﹣y02﹣x0﹣y0=

①②消去y0,整理得

∵x0≠2

∵﹣2x02∴﹣2t﹣1

故实数t的取值范围为(﹣2﹣1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,中点,,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数f(x)=x3ax2bxc,曲线yf(x)在点x=1处的切线方程为

ly=3x+1,且当x时,yf(x)有极值.

(1)求abc的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,是棱上动点,下列说法正确的是( )

A. 对任意动点,在平面不存在与平面平行的直线

B. 对任意动点,在平面存在与平面垂直的直线

C. 当点运动到的过程中,与平面所成的角变大

D. 当点运动到的过程中,点到平面的距离逐渐变小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点轴上,中心在坐标原点,长轴长为4,短轴长为.

1)求椭圆的标准方程;

2)是否存在过的直线,使得直线与椭圆交于?若存在,请求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCDRtABCRtBCD拼接而成,其中∠BAC=∠BCD90°,∠DBC30°ABAC,将△ABC沿着BC折起,

1)若,求异面直线ABCD所成角的余弦值;

2)当四面体ABCD的体积最大时,求二面角ABCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆近年来旅游业高速发展,有很多著名景点,如洪崖洞、磁器口、朝天门、李子坝等.为了解端午节当日朝天门景点游客年龄的分布情况,从年龄在22~52岁之间的旅游客中随机抽取了1000人,制作了如图的频率分布直方图.

(1)求抽取的1000人的年龄的平均数、中位数;(每一组的年龄取中间值)

(2)现从中按照分层抽样抽取8人,再从这8人中随机抽取3人,记这3人中年龄在的人数为,求的分布列及.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点EFEF=,则下列结论中错误的是(

A.ACBEB.EF平面ABCD

C.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值

查看答案和解析>>

同步练习册答案