精英家教网 > 高中数学 > 题目详情
已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为
A.B.C.D.
D

试题分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为3,求出P到另一焦点的距离即可. 解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为3,由定义得点P到另一焦点的距离为2a-3=10-3=7.故选D
点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆有相同的焦点,点分别是椭圆的右、右顶点,若椭圆经过点
(1)求椭圆的方程;
(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;
(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰直角三角形,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已经双曲线x-my=m(m>0)的一条渐近线与直线2x-y+3=0垂直,则该双曲线的准线方程为
A.x=B.x=C.x=D.x=

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的中心为原点,的焦点,过的直线相交于两点,且的中点为,则的方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为

轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设轴的交点为,过坐标原点的直线
相交于两点,直线分别与相交于.   
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线的斜率为,且右焦点与抛物线的焦点重合,则该双曲线的方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P是曲线C:上的动点,点P到点(0,1)的距离和它到
焦点F的距离之和的最小值为
(1)求曲线C的方程
(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,
过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C
相切?若存在,求出k的值,若不存在,说明理由。

查看答案和解析>>

同步练习册答案