精英家教网 > 高中数学 > 题目详情
双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.
(1) x2=1.(2) 3x-y-6=0或3x+y-6=0.

试题分析:(1)依题意有
解得a=1,b=,c=2.所以,所求双曲线的方程为x2=1.(4分)
(2)当直线l⊥x轴时,||=6,不合题意.(5分)
当直线l的斜率存在时,设直线l的方程为y=k(x-2).
得,
(3-k2)x2+4k2x-4k2-3=0.                          
因为直线与双曲线的右支交于不同两点,所以3-k2≠0.(7分)
设P(x1,y1),Q(x2,y2),M(x0,y0),则x1、x2是方程①的两个正根,于是有

所以k2>3。 (9分)
因为·=0,则PN⊥QN,又M为PQ的中点,||=10,所以|PM|=|MN|=|MQ|=|PQ|=5.
又|MN|=x0+2=5,∴x0=3,
而x0=3,∴k2=9,解得k=±3.(10分)
∵k=±3满足②式,∴k=±3符合题意.
所以直线l的方程为y=±3(x-2).
即3x-y-6=0或3x+y-6=0.(12分)
点评:中档题,涉及双曲线的题目,在近些年高考题中是屡见不鲜,往往涉及求标准方程,研究直线与双曲线的位置关系。求标准方程,主要考虑定义及a,b,c,e的关系,涉及直线于双曲线位置关系问题,往往应用韦达定理。本题利用“垂直关系”较方便的得到了直线的斜率,进一步确定得到直线方程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设点是双曲线与圆在第一象限的交点,其中分别是双曲线的左、右焦点,若,则双曲线的离心率为______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线的左焦点,点是该双曲线的右顶点,过且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线的离心率的取值范围是(   ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,则等于___________.

查看答案和解析>>

同步练习册答案