精英家教网 > 高中数学 > 题目详情
18.若a=2log32,b=log${\;}_{\frac{1}{4}}$2,$c={2^{-\frac{1}{3}}}$,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

分析 利用对数函数、指数函数的单调性求解.

解答 解:∵a=2log32=log34>log33=1,
b=log${\;}_{\frac{1}{4}}$2<$lo{g}_{\frac{1}{4}}1$=0,
0<$c={2^{-\frac{1}{3}}}$<20=1,
∴a>c>b.
故选:B.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若函数f(x)在定义域内满足:
(1)对于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正数M,使得|f(x)|≤M,则称函数f(x)为“单通道函数”,给出以下4个函数:
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“单通道函数”有①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=sin2x-\sqrt{3}cos2x$的图象的一条对称轴方程为(  )
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三个函数f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零点依次为a,b,c,则下列结论正确的是(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)满足f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x+1)的表达式为(  )
A.f(x+1)=(x+1)2+$\frac{1}{(x+1)^{2}}$B.f(x+1)=(x-$\frac{1}{x}$)2+$\frac{1}{(x-\frac{1}{x})^{2}}$
C.f(x+1)=(x+1)2+2D.f(x+1)=(x+1)2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若三点A(3,3),B(a,0),C(0,b)(其中a•b≠0)共线,则$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:如图所示,AB∥CD,OD2=BO•OE.求证:AD∥CE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;
(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的渐近线方程为$y=±\frac{3}{4}x$,且其焦点为(0,5),则双曲线C的方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

同步练习册答案