ÒÑÖªÍÖÔ²¦£µÄ·½³ÌΪ£¨a>b>0£©£¬A£¨0£¬b£© ¡¢B£¨0£¬-b£©ºÍ Q£¨a£¬0£©Îª¦£µÄÈý¸ö¶¥µã¡£
£¨¢ñ£©ÈôµãMÂú×㣬ÇóµãMµÄ×ø±ê£»
£¨¢ò£©ÉèÖ±Ïßl1£ºy=k1x+p½»ÍÖÔ²¦£ÓÚC¡¢DÁ½µã£¬½»Ö±Ïßl2£ºy=k2xÓÚµãE¡£Èôk1¡¤k2=-£¬Ö¤Ã÷£ºEΪCDµÄÖе㣻
£¨¢ó£©ÉèµãPÔÚÍÖÔ²¦£ÄÚÇÒ²»ÔÚxÖáÉÏ£¬ÈçºÎ×÷¹ýPQÖеãFµÄÖ±Ïßl£¬Ê¹µÃlÓëÍÖÔ²¦£µÄÁ½¸ö½»µãP1¡¢P2Âú×㣿Áîa=10£¬b=5£¬µãPµÄ×ø±êÊÇ£¨-8£¬-1£©¡£ÈôÍÖÔ²¦£ÉϵĵãP1¡¢P2Âú×㣬ÇóµãP1¡¢P2µÄ×ø±ê¡£
½â£º£¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x0£¬y0£©£¬ÓÉÌâÒâ¿ÉÖª

¡àµãMµÄ×ø±êΪ£»
£¨¢ò£©Ö¤Ã÷£ºÓÉ
µÃ£¨b2+a2k12£©x2+2a2k1px+a2p2-a2b2=0
¡àCDµÄÖеã×ø±êΪ


ÓÉ
µÃl1Óël2µÄ½»µãEµÄ×ø±êΪ
¡àl1Óël2µÄ½»µãEΪCDµÄÖе㣻
£¨¢ó£©ÉèOFµÄбÂÊΪk1£¬¹ýF×÷бÂÊΪµÄÖ±Ïß½»ÍÖÔ²P1¡¢P2Á½µã
ÓÉ£¨¢ò£©¿ÉÖª£¬FÊÇP1P2µÄÖе㣬ËıßÐÎPP1QP2ÊÇƽÐÐËıßÐÎ
ËùÒÔ
Ö±ÏßP1P2¼´ÎªËùÇó£»
ÓÉa=10£¬b=5¼°µãP£¨-8£¬-1£©µÃPQÖеãΪ
OSµÄбÂÊ
¹ýµãSÇÒбÂʵÄÖ±ÏßlµÄ·½³ÌÊÇy=
¼ÇlÓëTµÄ½»µãΪP1¡¢P2£¬Ôò
ÓÉ
½âµÃP1£¨8£¬3£©£¬P2£¨-6£¬-4£©¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬BÊÇËüµÄ϶¥µã£¬FÊÇÆäÓÒ½¹µã£¬BFµÄÑÓ³¤ÏßÓëÍÖÔ²¼°ÆäÓÒ×¼Ïß·Ö±ð½»ÓÚP¡¢QÁ½µã£¬ÈôµãPÇ¡ºÃÊÇBQµÄÖе㣬Ôò´ËÍÖÔ²µÄÀëÐÄÂÊÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²CµÄ·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬µãA¡¢B·Ö±ðΪÆä×ó¡¢ÓÒ¶¥µã£¬µãF1¡¢F2·Ö±ðΪÆä×ó¡¢ÓÒ½¹µã£¬ÒÔµãAΪԲÐÄ£¬AF1Ϊ°ë¾¶×÷Ô²A£»ÒÔµãBΪԲÐÄ£¬OBΪ°ë¾¶×÷Ô²B£»ÈôÖ±Ïßl£º y=-
3
3
x
±»Ô²AºÍÔ²B½ØµÃµÄÏÒ³¤Ö®±ÈΪ
15
6
£»
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©¼ºÖªa=7£¬ÎÊÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¹ýPµãÓÐÎÞÊýÌõÖ±Ïß±»Ô²AºÍÔ²B½ØµÃµÄÏÒ³¤Ö®±ÈΪ
3
4
£»Èô´æÔÚ£¬ÇëÇó³öËùÓеÄPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈªÖÝÄ£Ä⣩ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ£º
x2
a2
+
y2
2
=1 (a£¾0)
£¬Æä½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊe=
2
2
£®
£¨1£©Çó¸ÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©É趯µãP£¨x0£¬y0£©Âú×ã
OP
=
OM
+2
ON
£¬ÆäÖÐM£¬NÊÇÍÖÔ²CÉϵĵ㣬ֱÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
£¬ÇóÖ¤£ºx02+2
y
2
0
Ϊ¶¨Öµ£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÎÊ£ºÊÇ·ñ´æÔÚÁ½¸ö¶¨µãA£¬B£¬Ê¹µÃ|PA|+|PB|Ϊ¶¨Öµ£¿Èô´æÔÚ£¬¸ø³öÖ¤Ã÷£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x24
+y2=1
£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©Éè¹ý¶¨µãM£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²C1½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒÂú×ã|OA|2+|OB|2£¾|AB|2£¬£¨ÆäÖÐOΪԭµã£©£¬ÇólбÂʵÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x2
4
+y2=1
£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+
2
ÓëË«ÇúÏßC2ºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬ÇÒ
OA
OB
£¾2
£¨ÆäÖÐOΪԭµã£©£¬ÇókµÄ·¶Î§£®
£¨3£©ÊÔ¸ù¾Ý¹ì¼£C2ºÍÖ±Ïßl£¬Éè¼ÆÒ»¸öÓëxÖáÉÏijµãÓйصÄÈý½ÇÐÎÐÎ×´ÎÊÌ⣬²¢ÓèÒÔ½â´ð£¨±¾Ì⽫¸ù¾ÝËùÉè¼ÆµÄÎÊÌâ˼ά²ã´ÎÆÀ·Ö£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸