精英家教网 > 高中数学 > 题目详情
一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标;
(Ⅱ)求以为焦点且过点的椭圆的方程;
(Ⅲ)设直线与椭圆的两条准线分别交于两点,点为线段上的动点,求点 到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.

(Ⅰ)的坐标为
(Ⅱ)所求椭圆方程为
(Ⅲ)最小值=,此时点的坐标为 

(Ⅰ)设的坐标为,则
解得, 因此,点的坐标为
(Ⅱ),根据椭圆定义,

.   ∴所求椭圆方程为
(Ⅲ)椭圆的准线方程为
设点的坐标为,表示点的距离,表示点到椭圆的右准线的距离.

,令,则

时取得最小值.
因此,最小值=,此时点的坐标为-----------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知椭圆C: 过点(1,  ),F1F2分别为其左、右焦点,且离心率e= ;
(1)求椭圆C的方程;
(2)设过定点的直线与椭圆C交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A
(1)求满足条件的椭圆方程;
(2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量,经过定点且方向向量为的直线与经过定点且方向向量为的直线交于点M,其中R,常数a>0.
(1)求点M的轨迹方程;
(2)若,过点的直线与点M的轨迹交于C、D两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为过点和上顶点的直线,下顶点的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的动弦, 若为线段的中点,线段的中垂线和x轴交点为,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上一点到直线与到点(-2,0)的距离之比为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
(1)求斜率为2的平行弦的中点轨迹方程。
(2)过A(2,1)的直线L与椭圆相交,求L被截得的弦的中点轨迹方程;
(3)过点P(0.5,0.5)且被P点平分的弦所在直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的两个顶点坐标A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为(    )
A.+="1"B.+=1(y≠0)
C.+=1(y≠0)D.+=1(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1(a>b>0)的离心率e=,左焦点为F,A、B、C为其三个顶点,直线CF与AB交于D,则tan∠BDC的值等于(    )

A.3            B.-3            C.             D.-

查看答案和解析>>

同步练习册答案