精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
a
sinA
=
2c
3

(Ⅰ)确定角C的大小;
(Ⅱ)若c=
7
,且△ABC的面积为
3
3
2
,求a2+b2的值.
(Ⅰ)∵
a
sinA
=
2c
3
,∴由正弦定理得
a
sinA
=
c
sinC
=
2c
3
…(2分)
∴sinC=
3
2
…(4分)
∵△ABC是锐角三角形,∴C=
π
3
…(6分)
(Ⅱ)∵c=
7
,C=
π
3
,△ABC的面积为
3
3
2
,∴由面积公式得
1
2
absin
π
3
=
3
3
2
…(8分)
∴ab=6…(9分)
由余弦定理得a2+b2-2abcos
π
3
=7…(11分)
∴a2+b2=13…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在△中,内角的对边分别为,已知
(1)求的值;(2)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,a,b,c分别为内角A,B,C的对边,
且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知,于A处测得水深,于B处测得水深,于C处测得水深,求∠DEF的余弦值。                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知的三个内角,且其对边分别为,若 
(1)求角的值;

20090520

 
        

(2)若的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,已知a=5
6
,A=60°,B=45°,则b=(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x)(x∈R)

(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a=
3
,b+c=3,b>c,求b,c的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,若,则△的形状为(   )
A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△中,角A、B、C的对边分别是a、b、c,且,则△的形状一定是(  )
A.等边三角形                   B.等腰三角形
C.等腰三角形或直角三角形        D.直角三角形

查看答案和解析>>

同步练习册答案