【题目】已知数列
和
满足:
,
,
,且对一切
,均有
.
(1)求证:数列
为等差数列,并求数列
的通项公式;
(2)若
,求数列
的前n项和
;
(3)设
(
),记数列
的前n项和为
,问:是否存在正整数
,对一切
,均有
恒成立.若存在,求出所有正整数
的值;若不存在,请说明理由.
【答案】(1)证明见解析;
(2)
(3)存在,2或3
【解析】
(1)原式两边同时除以
再根据等差数列定义证明即可.
(2)代入(1)中求得的数列
的通项公式,再利用数列前
项积与通项的方法求解即可.
(3)根据(2)中的方法求得
关于
的解析式,再将
代入
,再根据正整数
,分情况讨论
的取值,将
的关系式看成函数进行单调性的分析即可.
(1)证明:由
,
,两边除以
,得
,即
,
所以,数列
为等差数列
,所以,![]()
(2)当
时,由(1)
,
当
时有
,
当
时有
,
,两式相除有
.
当
时,
也成立.故
,
![]()
(3)由题
,同(2)有
.
又![]()
因为对一切
,均有
恒成立,
所以当
时,
.
若
,则
,
,故
,故不成立.
若
,
,
故
,
,
,
,
.
且当
时,
.
.故成立.
若
,则
,故
,
,
,
.
又当
时,
,故
,故成立.
若
,则
,![]()
令
,
.
故
在
上是增函数,又
.所以
.
故
,故不成立.
综上所述,
的取值为2或3;
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,倾斜角为
的直线
的参数方程为
(
为参数).以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程是
.
(Ⅰ)写出直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)若直线
经过曲线
的焦点
且与曲线
相交于
两点,设线段
的中点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电器专卖店销售某种型号的空调,记第
天(
,
)的日销售量为
(单位;台).函数
图象中的点分别在两条直线上,如图,该两直线交点的横坐标为
,已知
时,函数
.
![]()
(1)当
时,求函数
的解析式;
(2)求
的值及该店前
天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过
台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
和
满足:
,
,
且对一切
,均有
.
(1)求证:数列
为等差数列,并求数列
的通项公式;
(2)求数列
的前
项和
;
(3)设
,记数列
的前
项和为
,求正整数
,使得对任意
,均有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
,其中m是不等于零的常数.
(1)
时,直接写出
的值域;
(2)求
的单调递增区间;
(3)已知函数
,
,定义:
,
,
,
,其中,
表示函数
在
上的最小值,
表示函数
在
上的最大值.例如:
,
,则
,
,
,
.当
时,
恒成立,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形
中,![]()
,
,E为CD中点,将
沿AE折到
的位置.
![]()
![]()
(1)证明:
;
(2)当折叠过程中所得四棱锥
体积取最大值时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆
上任一点,点
到直线
:
的距离为
,到点
的距离为
,且
,若直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
![]()
(1)求椭圆
的标准方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:只要
,必有
,则称
具有性质
.
(1)若
具有性质
,且![]()
,求
;
(2)若无穷数列
是等差数列,无穷数列
是等比数列,
,
,
.判断
是否具有性质
,并说明理由;
(3)设
是无穷数列,已知
.求证:“对任意
都具有性质
”的充要条件为“
是常数列”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com