【题目】如图,等腰梯形
中,![]()
,
,E为CD中点,将
沿AE折到
的位置.
![]()
![]()
(1)证明:
;
(2)当折叠过程中所得四棱锥
体积取最大值时,求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】对于双曲线
:
(
),若点
满足
,则称
在
的外部;若点
满足
,则称
在
的内部.
(1)证明:直线
上的点都在
的外部.
(2)若点
的坐标为
,点
在
的内部或
上,求
的最小值.
(3)若
过点
,圆
(
)在
内部及
上的点构成的圆弧长等于该圆周长的一半,求
、
满足的关系式及
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中三年级有AB两个班,各有50名同学,这两个班参加能力测试,成绩统计结果如表:
AB班成绩的频数分布表
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
A班频数 | 4 | 8 | 23 | 9 | 6 |
B班频数 | 7 | 12 | 13 | 10 | 8 |
(1)试估计AB两个班的平均分;
(2)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:M
.
分别求这两个班学生成绩的M总值,并据此对这两个班的总体水平作简单评价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
和
满足:
,
,
,且对一切
,均有
.
(1)求证:数列
为等差数列,并求数列
的通项公式;
(2)若
,求数列
的前n项和
;
(3)设
(
),记数列
的前n项和为
,问:是否存在正整数
,对一切
,均有
恒成立.若存在,求出所有正整数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的中心为
,一个方向向量为
的直线
与
只有一个公共点![]()
(1)若
且点
在第二象限,求点
的坐标;
(2)若经过
的直线
与
垂直,求证:点
到直线
的距离
;
(3)若点
、
在椭圆上,记直线
的斜率为
,且
为直线
的一个法向量,且
求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图圆锥PO,轴截面PAB是边长为2的等边三角形,过底面圆心O作平行于母线PA的平面,与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E的距离为( )
![]()
A.1B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点E,F分别是棱长为2的正方体
的棱AB,
的中点.如图,以C为坐标原点,射线CDCB
分别是x轴y轴z轴的正半轴,建立空间直角坐标系.
![]()
(1)求向量
与
的数量积;
(2)若点M,N分别是线段
与线段
上的点,问是否存在直线MN,
平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥
中,
底面ABC,M是 BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为
. 求:
![]()
(1)三棱锥
的体积;
(2)异面直线PM与AC所成角的大小. (结果用反三角函数值表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com