【题目】如图圆锥PO,轴截面PAB是边长为2的等边三角形,过底面圆心O作平行于母线PA的平面,与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E的距离为( )
![]()
A.1B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】(理)已知数列
满足
(
),首项
.
(1)求数列
的通项公式;
(2)求数列
的前
项和
;
(3)数列
满足
,记数列
的前
项和为
,
是△ABC的内角,若
对于任意
恒成立,求角
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
,其中m是不等于零的常数.
(1)
时,直接写出
的值域;
(2)求
的单调递增区间;
(3)已知函数
,
,定义:
,
,
,
,其中,
表示函数
在
上的最小值,
表示函数
在
上的最大值.例如:
,
,则
,
,
,
.当
时,
恒成立,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形
中,![]()
,
,E为CD中点,将
沿AE折到
的位置.
![]()
![]()
(1)证明:
;
(2)当折叠过程中所得四棱锥
体积取最大值时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)
是函数数
的导函数,记
,若
在区间
上为单调函数,求实数a的取值范围;
(2)设实数
,求证:对任意实数![]()
,总有
成立.
附:简单复合函数求导法则为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆
上任一点,点
到直线
:
的距离为
,到点
的距离为
,且
,若直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
![]()
(1)求椭圆
的标准方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人同时参加一次数学测试,共有
道选择题,每题均有
个选项,答对得
分,答错或不答得
分.甲和乙都解答了所有的试题,经比较,他们只有
道题的选项不同,如果甲最终的得分为
分,那么乙的所有可能的得分值组成的集合为____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个三口之家,共
个大人,
个小孩,约定星期日乘红色、白色两辆轿车结伴郊游,每辆车最多乘坐
人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com