Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­ÊÇÇúÏßÉϵĵ㣬A1£¨a1£¬0£©£¬A2£¨a2£¬0£©£¬¡­£¬An£¨an£¬0£©£¬¡­ÊÇxÖáÕý°ëÖáÉϵĵ㣬ÇÒ¡÷AA1P1£¬¡÷A1A2P2£¬¡­£¬¡÷An-1AnPn£¬¡­¾ùΪб±ßÔÚxÖáÉϵĵÈÑüÖ±½ÇÈý½ÇÐΣ¨AΪ×ø±êÔ­µã£©£®
£¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹Øϵ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹Øϵ£»
£¨2£©²Â²â²¢Ö¤Ã÷ÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©É裬¼¯ºÏB={b1£¬b2£¬b3£¬¡­£¬bn£¬¡­}£¬A={x|x2-2ax+a2-1£¼0£¬x¡ÊR}£¬ÈôA¡ÉB=∅£¬Çóʵ³£ÊýaµÄÈ¡Öµ·¶Î§£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÒÀÌâÒâÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵ㬣¬£®
£¨2£©Óɵà =£¬¼´£¬²Â²â£¬
ÔÙÓÃÊýѧ¹éÄÉ·¨½øÐÐÖ¤Ã÷£®
£¨3£©ÓÃÁÑÏî·¨ÇóµÃµÄֵΪ£¬Óɺ¯ÊýÔÚÇø¼ä
[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒ£¬ÇóµÃ£¬ÔÙÓÉ A={x|x2-2ax+a2-1£¼0£¬a¡ÊR}=
{x|x¡Ê£¨a-1£¬a+1£©}£¬A¡ÉB=¦Õ£¬ÓÐa+1¡Ü0£¬»ò£¬ÓÉ´ËÇóµÃʵ³£ÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵ㬣¬£®¡­£¨4·Ö£©
£¨2£©Óɵà =£¬
¼´£¬²Â²â£®      ¡­£¨2·Ö£©
Ö¤Ã÷£º¢Ùµ±n=1ʱ£¬¿ÉÇóµÃ £¬ÃüÌâ³ÉÁ¢£® ¡­£¨1·Ö£©
¢Ú¼ÙÉèµ±n=kʱ£¬ÃüÌâ³ÉÁ¢£¬¼´ÓУ¬¡­£¨1·Ö£©
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°£¬
µÃ£¬
¼´
½âµÃ£¬£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£®   ¡­£¨3·Ö£©
×ÛÉÏËùÊö£¬¶ÔËùÓÐn¡ÊN*£¬£®      ¡­£¨1·Ö£©
£¨3£©==£®¡­£¨2·Ö£©
ÒòΪº¯ÊýÔÚÇø¼ä[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒ£¬
ËùÒÔ£®¡­£¨2·Ö£©
A={x|x2-2ax+a2-1£¼0£¬a¡ÊR}={x|x¡Ê£¨a-1£¬a+1£©}
ÓÉA¡ÉB=¦Õ£¬ÓÐa+1¡Ü0£¬»ò £¬
¹Ê£¬£¬¼´ ʵ³£ÊýaµÄÈ¡Öµ·¶Î§Îª £®¡­£¨2·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýѧ¹éÄÉ·¨µÄÓ¦Óã¬ÓÃÁÑÏî·¨¶ÔÊýÁÐÇóºÍ£¬Á½¸ö¼¯ºÏµÄ½»¼¯µÄ¶¨ÒåµÄÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Ð´³öa1£¬a2£¬a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®Ôòa1=
 
£»²ÂÏëan¹ØÓÚnµÄ±í´ïʽΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Ð´³öa1£¬a2£¬a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽt2-2mt+
1
6
£¾bn
ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£© ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanºÍµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1µÄ¹Øϵʽ£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Õ¢±±Çø¶þÄ££©Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­ÊÇÇúÏßC£ºy2=
1
2
x(y¡Ý0)
Éϵĵ㣬A1£¨a1£¬0£©£¬A2£¨a2£¬0£©£¬¡­£¬An£¨an£¬0£©£¬¡­ÊÇxÖáÕý°ëÖáÉϵĵ㣬ÇÒ¡÷A0A1P1£¬¡÷A1A2P2£¬¡­£¬¡÷An-1AnPn£¬¡­¾ùΪб±ßÔÚxÖáÉϵĵÈÑüÖ±½ÇÈý½ÇÐΣ¨A0Ϊ×ø±êÔ­µã£©£®
£¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹Øϵ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹Øϵ£»
£¨2£©²Â²â²¢Ö¤Ã÷ÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬¼¯ºÏB={b1£¬b2£¬b3£¬¡­£¬bn£¬¡­}£¬A={x|x2-2ax+a2-1£¼0£¬x¡ÊR}£¬ÈôA¡ÉB=∅£¬Çóʵ³£ÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸