【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,且曲线
与
恰有一个公共点.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)已知曲线
上两点
,
满足
,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知点
,
(其中
)是曲线
上的两点,
,
两点在
轴上的射影分别为点
,
且
.
(1)当点
的坐标为
时,求直线
的方程;
(2)记
的面积为
,梯形
的面积为
,求
的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,设椭圆
的左焦点为
,短轴的两个端点分别为
,且
,点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
和圆
分别相切于
,
两点,当
面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】蔬菜批发市场销售某种蔬菜,在一个销售周期内,每售出1吨该蔬菜获利500元,未售出的蔬菜低价处理,每吨亏损100元.统计该蔬菜以往100个销售周期的市场需求量,绘制下图所示频率分布直方图.
![]()
(Ⅰ)求
的值,并求100个销售周期的平均市场需求量(以各组的区间中点值代表该组的数值);
(Ⅱ)若经销商在下个销售周期购进了190吨该蔬菜,设
为该销售周期的利润(单位:元),
为该销售周期的市场需求量(单位:吨).求
与
的函数解析式,并估计销售的利润不少于86000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )
A. 1升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
为正方形
的中心,
为正三角形,平面
平面
,
是线段
的中点,则( )
![]()
A.直线
,
是相交直线
B.直线
与直线
所成角等于![]()
C.直线
与直线
所成角等于直线
与直线
所成角
D.直线
与平面
所成角小于直线
平面
所成角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线
的焦点
且斜率为1的直线交抛物线
于
,
两点,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)抛物线
上一点
,直线
(其中
)与抛物线
交于
,
两个不同的点(
,
均不与点
重合).设直线
,
的斜率分别为
,
,
.直线
是否过定点?如果是,请求出所有定点;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com