精英家教网 > 高中数学 > 题目详情
设定义在(0,+∞)上的函数f(x)满足;对任意a,b∈(0,+∞),都有f(b)=f(a)-f(
a
b
),且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)判断并证明函数f(x)的单调性;
(3)如果f(3)=1,解不等式f(x)-f(
1
x-8
)>2.
(1)取a=b=1,得f(1)=f(1)-f(1)=0,所以f(1)=0.
(2)函数在(0,+∞)上是单调增函数.
任取x1,x2∈(0,+∞),设x1<x2,则f(x2)-f(x1)=f(
x2
x1
),因为0<x1<x2,所以
x2
x1
>1,又当x>1时,有f(x)>0,所以f(x2)-f(x1)=f(
x2
x1
)>0,即f(x2)>f(x1).所以f(x)在(0,+∞)上是单调增函数.
(3)若f(3)=1,则2=1+1=f(3)+f(3)=f(9),f(x)-f(
1
x-8
)=f(x(x-8)),则不等式f(x)-f(
1
x-8
)>2可以化为f(x(x-8))>f(9),即
x>0
x-8>0
x(x-8)>0
,解得x>9.即不等式的解集为(9,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在区间(0,
π2
)
上的函数y=4tanx的图象与y=6sinx的图象交于点P,过点P作x轴的垂线,垂足为P1,直线PP1与函数y=cosx的图象交于点P2,则线段P1P2的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在(0,+∞)上的函数f(x)满足以下条件:①对于任意实数a,b,都有f(a•b)=f(a)+f(b)-p,其中p是正实数;②f(2)=p-1;(2)③x>1时,总有f(x)<p
(1)求f(1)及f(
12
)
的值(写成关于p的表达式);
(2)求证:f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在区间(0,
π
2
)
上的函数y=sin2x的图象与y=
1
2
cosx
图象的交点横坐标为α,则tanα的值为
15
15
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在(0,+∞)上的增函数f(x)满足f(a)>f(π),则实数a取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)设定义在(0,+∞)上的函数f(x)满足:①对于任意实数a,b都有f(ab)=f(a)+f(b)-5;②f(2)=4.则f(1)=
5
5
;若an=f(2n)(n∈N*),数列{an}的前项和为Sn,则Sn的最大值是
10
10

查看答案和解析>>

同步练习册答案