精英家教网 > 高中数学 > 题目详情
已知集合M={x|x=m+
1
6
,m∈Z},集合N={x|x=
n
2
-
1
3
,n∈Z},集合P={x|x=
p
2
+
1
6
,p∈Z},试确定M,N,P之间满足的关系.
考点:集合的包含关系判断及应用
专题:集合
分析:N={x|x=
n
2
-
1
3
,n∈Z}={x|x=
n-1
2
+(
1
2
-
1
3
),n∈Z},可得N=P,结合当p为偶数时,P={x|x=
p
2
+
1
6
,p∈Z}=M,结合集合子集的定义可得答案.
解答: 解:N={x|x=
n
2
-
1
3
,n∈Z}
={x|x=
n-1
2
+(
1
2
-
1
3
),n∈Z}
={x|x=
n-1
2
+
1
6
,n∈Z}
={x|x=
p
2
+
1
6
,p∈Z}
=P,
当p为偶数时,
P={x|x=
p
2
+
1
6
,p∈Z}
={x|x=m+
1
6
,m∈Z}
=M,
∴M?N=P
点评:本题考查的知识点是集合的包含关系的判断及应用,正确理解子集的定义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点P(1,2)的直线与圆x2+y2+2x-6y+5=0相切,且与直线ax+y-1=0垂直,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若1<a+b<5,-1<a-b<3,求3a-2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)A(n):A1,A2,A3,…,An与B(n):B1,B2,B3,…,Bn,其中n≥3,若同时满足:
①两点列的起点和终点分别相同;
②线段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,则称A(n)与B(n)互为正交点列.
(Ⅰ)求A(3):A1(0,2),A2(3,0),A3(5,2)的正交点列B(3);
(Ⅱ)判断A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)是否存在正交点列B(4)?并说明理由;
(Ⅲ)?n≥5,n∈N,是否都存在无正交点列的有序整点列A(n)?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的一元二次不等式x2+ax+1>0(a为实数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1、x2为实系数一元二次方程ax2+bx+c=0的两个虚根,且
x
2
1
x2
∈R,求
x1
x2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式:
(1)log26-log23;
(2)log53+log5
1
3

(3)logac•logca.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,1),且f(
1
3
)=1,对?x,y∈(0,1),都有f(x)+f(y)=f(
x+y
1+xy
),数列{an}满足a1=
1
3
,an+1=
2an
1+
a
2
n

(Ⅰ)证明:?n∈N*
1
3
≤an<1;
(Ⅱ)若数列{bn}满足bn=f(an),求数列{bn}的通项公式;
(Ⅲ)设An=
1
n
n
i=1
ai
,证明:当n≥2时,|
n
k=1
ak-
n
k=1
Ak|<
2(n-1)
3
.(其中符号
n
i=1
ai=a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆C与定圆M:(x-2)2+y2=4相切,且与y轴相切,则圆心C的轨迹方程为:
 

查看答案和解析>>

同步练习册答案