精英家教网 > 高中数学 > 题目详情
2.求函数y=$\sqrt{3{x}^{2}+2x-1}$的定义域.

分析 根据函数y的解析式,二次根式被开方数大于或等于0,列出不等式求出解集即可.

解答 解:∵函数y=$\sqrt{3{x}^{2}+2x-1}$,
∴3x2+2x-1≥0,
即(x+1)(3x-1)≥0,
解得x≤-1或x≥$\frac{1}{3}$,
∴函数y的定义域是{x|x≤-1或x≥$\frac{1}{3}$}.

点评 本题考查了利用函数的解析式求定义域的应用问题,也考查了不等式的解法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.非负实数x满足$\left\{\begin{array}{l}{x+2y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=3x+y的最大值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.把下列各角的度数化为弧度数,并写成0到2π的角加上2kπ(k∈Z)的形式:
(1)-64°;
(2)400°;
(3)-722°30′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当x<0时,指数函数y=(a2-1)x的值总大于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=2,an+1=a2n-an+λ.
(I)是否存在实数λ,使得数列{an}是等比数列,若存在,求出λ的值;不存在,说明理由;
(Ⅱ)当λ=1时,证明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列算法中,若输入n=10,则将输出A=3.
第一步,给定一个正整数n.
第二步,令A=3,k=1.
第三步,判断k<n是否成立,若是,则执行第四步;否则,执行第六步.
第四步,令B=$\frac{1}{1-A}$.
第五步,将B的值赋给A,并将k的值增加1仍用k表示,然后返回执行第三步.
第六步,输出A.算法结束.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x+2,x∈R的反函数为(  )
A.x=2-yB.x=y-2C.y=2-x,x∈RD.y=x-2,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=$\frac{2co{s}^{3}x-si{n}^{2}(360°-x)+2sin(90°+x)+1}{2+2co{s}^{2}(180°+x)+cos(-x)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.7个人坐成-排照相:
(1)如果甲、乙两人必须坐在两端,有多少种坐法?
(2)如果甲不坐在两端.有多少种坐法?

查看答案和解析>>

同步练习册答案