精英家教网 > 高中数学 > 题目详情
设函数,其中常数a>1,f(x)=
13
x3-(1+a)x2+4ax+24a
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.
分析:(1)先对函数进行求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减可确定函数的单调性.
(2)先将问题转化为求函数在x≥0时的最小值问题,再结合(1)中的单调性可确定f(x)在x=2a或x=0处取得最小值,求出最小值,即可得到a的范围.
解答:解:(1)f'(x)=x2-2(1+a)x+4a=(x-2)(x-2a)
由a>1知,当x<2时,f'(x)>0,
故f(x)在区间(-∞,2)是增函数;
当2<x<2a时,f'(x)<0,
故f(x)在区间(2,2a)是减函数;
当x>2a时,f'(x)>0,
故f(x)在区间(2a,+∞)是增函数.
综上,当a>1时,f(x)在区间(-∞,2)和(2a,+∞)是增函数,
在区间(2,2a)是减函数.
(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.
f(2a)=
1
3
(2a)3-(1+a)(2a)2+4a•2a+24a
=-
4
3
a3+4a2+24a
,f(0)=24a
由假设知
a>1
f(2a)>0
f(0)>0

a>1
-
4
3
a(a+3)(a-6)>0
24a>0.
解得1<a<6
故a的取值范围是(1,6)
点评:本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年福建省龙岩一中上学期高二期中考试理科数学试卷 题型:解答题

设函数,其中常数a>1
(1)讨论f(x)的单调性;
(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.w.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省高三第一次模拟考试文科数学试卷(解析版) 题型:解答题

设函数 ,其中常数a>1

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:四川省2010-2011学年高三一诊模拟(文科) 题型:解答题

(满分12分)设函数,其中常数a>1.

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)若当x≥0时, f(x)>0恒成立,求a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省上学期高二期中考试理科数学试卷 题型:解答题

设函数,其中常数a>1

(1)讨论f(x)的单调性;

(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.w.

 

查看答案和解析>>

同步练习册答案