精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

【答案】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;

(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);

=(1,1,0), =(0,0,1), =(1,﹣1,0),

所以 =0, =0;

即PQ⊥DQ,PQ⊥DC,

故PQ⊥平面DCQ,

又PQ平面PQC,所以平面PQC⊥平面DCQ;

(Ⅱ)依题意,有B(1,0,1),

=(1,0,0), =(﹣1,2,﹣1);

=(x,y,z)是平面的PBC法向量,

因此可取 =(0,﹣1,﹣2);

是平面PBQ的法向量,则

可取 =(1,1,1),

所以cos< >=﹣

故二面角角Q﹣BP﹣C的余弦值为﹣


【解析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)根据坐标系,求出 的坐标,由向量积的运算易得 =0, =0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、 的坐标,进而求出平面的PBC的法向量 与平面PBQ法向量 ,进而求出cos< >,根据二面角与其法向量夹角的关系,可得答案.
【考点精析】根据题目的已知条件,利用平面与平面垂直的判定和向量语言表述面面的垂直、平行关系的相关知识可以得到问题的答案,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直;若平面的法向量为,平面的法向量为,要证,只需证,即证;要证,只需证,即证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中点.
(1)求证:A1C∥平面BDC1
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数,函数

定义域为求实数取值范围;

⑵当时,求函数最小值

是否存在非负实数使得函数定义域为值域为若存在求出值;若不存在,则说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数= .

(1)是否存在实数使函数是奇函数?并说明理由;

(2)(1)的条件下,, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣(a+1)ln(x+1),其中a>0.
(1)求f(x)的单调区间;
(2)设f(x)的最小值为g(a),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则(
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:

不关注

关注

总计

男生

30

15

45

女生

45

10

55

总计

75

25

100

根据表中数据,通过计算统计量K2= ,并参考一下临界数据:

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过(
A.0.10
B.0.05
C.0.025
D.0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)设直线 与圆相交于两点,求实数的取值范围;

(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案