精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣(a+1)ln(x+1),其中a>0.
(1)求f(x)的单调区间;
(2)设f(x)的最小值为g(a),求证:

【答案】
(1)解:由已知可得函数f(x)的定义域为(﹣1,+∞),

∵a>0,x>﹣1,∴当 时,f'(x)<0,

时,f'(x)>0,

∴函数f(x)的单调递减区间是 ,单调递增区间是


(2)解:由(1)可知,f(x)的最小值

,a>0.

要证明

只须证明 成立.

,x∈(0,+∞).

∴φ(x)在区间(0,+∞)上是增函数,∴φ(x)>φ(0)=0,即

得到 成立.

设ψ(x)=ln(x+1)﹣x,x∈(0,+∞),同理可证ln(x+1)<x.

得到 成立.因此,


【解析】(1)先对函数进行求导,根据导函数大于0原函数单调递增,导函数小于0原函数单调递减可得答案;(2)由(1)可知,f(x)的最小值为 ,a>0,构造函数设 ,x∈(0,+∞),利用导数研究函数的单调性和最值,即可证明结论.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】建造一个容积为1 600立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元.

1把总造价y元表示为池底的一边长x米的函数;

2由于场地原因,蓄水池的一边长不能超过20米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1过点A(0,1),l2过点B(5,0),如果l1l2,且l1与l2的距离为5,求l1、l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cx2+y2-2x-4y+m=0

1)当m为何值时,曲线C表示圆;

2)若曲线C与直线x+2y-4=0交于MN两点,且OM⊥ON(O为坐标原点),求m的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆的方程为 (θ为参数),直线的方程为 (t为参数),则直线与圆的位置关系是(
A.相交过圆心
B.相交而不过圆心
C.相切
D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,平面平面 则四棱锥的外接球的表面积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水培植物需要一种植物专用营养液,已知每投放个单位的营养液,它在水中释放的浓度 (/升)随着时间 ()变化的函数关系式近似为,其中若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(/)时,它才能有效.

1若只投放一次2个单位的营养液,则有效时间最多可能达到几天?

2若先投放2个单位的营养液,3天后再投放个单位的营养液,要使接下来的2天中营养液能够持续有效,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质:该函数在上是减函数,在上是增函数.

1)已知,利用上述性质,求函数的单调区间和值域;

2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的取值范围

查看答案和解析>>

同步练习册答案