精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面为矩形,且
,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值. 
(I)略
(Ⅱ)直线PC与平面ABCD所成角的正弦值
本试题主要是考查了立体几何中的面面垂直的证明,以及线面角的求解的综合运用
(1)根据面面垂直的判定定理,得到结论。关键是证明DA垂直于平面PAB。
(2)在平面PAB内,过点P作PE⊥AB,垂足为E,则PE⊥平面ABCD,连结EC,
则∠PCE为直线PC与平面ABCD所成的角,作出角,证明求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在四棱锥中,平面,,,
.
(Ⅰ)证明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线所成的角为,求的长.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)如图所示,在四棱锥中,平面
平分的中点.

求证:(1)平面
(2)平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ) 证明:BC1//平面ACD1
(Ⅱ)证明:A1D⊥D1E;
(Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。

(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,平面和平面的位置关系为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,ABCD-A1B1C1D1为正方体,下面结论错误的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图5所示,在三棱锥中,,平面平面于点

(1)证明△为直角三角形;
(2)求直线与平面所成角的正弦值

查看答案和解析>>

同步练习册答案