精英家教网 > 高中数学 > 题目详情
(本题满分12分)在四棱锥中,平面,,,
.
(Ⅰ)证明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱上的点,满足异面直线所成的角为,求的长.
 
(Ⅰ)见解析(Ⅱ) (Ⅲ)

试题分析:(1)以正半轴方向,建立空间直角坐标系

       
二面角的正弦值为
(3)设;则

解得     即
点评:利用空间向量求解立体几何题目首要的选择一个合适的建系位置
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三条直线异面,且异面,则(  )
A.异面.B.相交.
C.平行.D.异面、相交、平行均有可能.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条直线都与一个平面平行,则这两条直线的位置关系是(  )
A.平行B.相交C.异面D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有两条不同的直线m,n与两个不同的平面α,β,下列命题正确的是(  ).
A.m∥α,n∥β,且α∥β,则m∥n
B.m⊥α,n⊥β,且α⊥β,则m∥n
C.m∥α,n⊥β,且α⊥β,则m∥n
D.m⊥α,n∥β,且α∥β,则m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

( )已知两个不同的平面,能判定//的条件是
A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
 ②  ③  ④
其中正确的个数(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为矩形,且
,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值. 

查看答案和解析>>

同步练习册答案