精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ) 证明:BC1//平面ACD1
(Ⅱ)证明:A1D⊥D1E;
(Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
见解析。
(1)证明即可.
(2)证明.
(3)设点E到面 ACD1的距离为h,然后利用体积法求h即可.具体利用求解.

Ⅰ)证明:∵AB//A1B1,AB=A1B1
A1B1// D1C1,A1B1= D1C1
∴AB// D1C1,AB=D1C1,   ……1分
∴AB C1 D1为平行四边形,…… 2分
∴B C1 // AD1,         ……3分
又B C1平面ACD1,AD1Ì平面ACD1, ……4分
所以BC1//平面ACD1.   ……5分
(Ⅱ) 证明:∵ AE⊥平面AA1D1D,A1DÌ平面AA1D1D,
∴ A1D⊥AE,                         ……6分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
 ②  ③  ④
其中正确的个数(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为矩形,且
,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则   ②若,则
③若,则  ④若,则
其中正确命题的序号是 _______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m、n和平面α、β,若α⊥β,α∩β=m,nα,要使n⊥β,则应增加的条件是(   )
A.m∥nB.n⊥m    C.n∥αD.n⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCDABCD′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则以下结论中错误的是(   )
A.四边形BFDE一定是平行四边形B.四边形BFDE有可能是正方形
C.四边形BFDE有可能是菱形D.四边形BFDE在底面投影一定是正方形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,点的中点.
(1) 求所成的角的余弦值;
(2) 求直线与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成角为( )
A.30°
B.45°
C.60°
D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,二面角的正切值为
A.B.C.D.

查看答案和解析>>

同步练习册答案