精英家教网 > 高中数学 > 题目详情
2.在△ABC中,角A,B,C的对边分别为a,b,c,面积为S,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(1)求证:a+c=2b,
(2)若B=$\frac{π}{3}$,S=4$\sqrt{3}$,求b.

分析 (1)利用已知条件结合正弦定理以及二倍角公式化简,推出结果即可.
(2)利用三角形的面积以及余弦定理,即可求出b的值.

解答 解:(1)证明:△ABC中,acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b,
由正弦定理得sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB,
即sinA•$\frac{1+cosC}{2}$+sinC•$\frac{1+cosA}{2}$=$\frac{3}{2}$sinB;
所以sinA+sinC+sinAcosC+cosAsinC=3sinB,
即sinA+sinC+sin(A+C)=3sinB,
因为sin(A+C)=sinB,
所以sinA+sinC=2sinB,
由正弦定理得a+c=2b;
(2)因为S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$acsin$\frac{π}{3}$=4$\sqrt{3}$,
所以ac=16,
又由余弦定理有b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac,
由(1)得a+c=2b,所以b2=4b2-48,得b=4.

点评 本题考查余弦定理以及正弦定理的应用,考查三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x+$\frac{4}{x}$(x≠0).
(1)判断并证明函数在其定义域上的奇偶性;
(2)判断并证明函数在(2,+∞)上的单调性;
(3)解不等式f(2x2+5x+8)+f(x-3-x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列式子中,成立的是(  )
A.log0.44>log0.46B.1.013.4>1.013.5C.3.50.3<3.40.3D.log78<1og87

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{x^2}{2}$-$\frac{y^2}{3}$=1的焦点到其渐近线距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=loga$\frac{1+x}{1-x}$(a>0,且a≠1).
(1)证明f(x)为奇函数;
(2)求使f(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,在区间(0,1)上单调递增的有(  )
①f(x)=x3-2x;②f(x)=$\frac{ln|x|}{{x}^{2}}$;③f(x)=-2x2+4|x|+3.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f1(x)=(x2+2x+1)ex,f2(x)=[f1(x)]′,f3(x)=[f2(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*.设fn(x)=(anx2+bnx+cn)ex,则b2015=(  )
A.4034B.4032C.4030D.4028

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.说明下列每组函数图象之间的关系.
(1)y=log3x与y=3x
(2)y=2x与y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|-2m-1<x<m+1},集合B={x|-1≤x≤2}.
(1)若x∈A是x∈B的充分不必要条件,求实数m的取值范围;
(2)若x∈A是x∈B的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案