精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
1-|x|
,分别给出下面几个结论,其中正确结论的序号有
①②③④
①②③④

①f(x)是奇函数;
②函数f(x)的值域为R;
③函数g(x)=f(x)+x有三个零点;
④当x1,x2∈(-∞,-1),且x1≠x2,则 
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.
分析:①利用奇函数的定义进行验证f(-x)=
-x
1-|-x|
=-f(x);②当x>0时,f(x)=
x
1-x
=-1+
1
1-x
,可求其值域,由①知当x<0时,可求f(x)值域,x=0时,f(x)=0,从而即可判断;③由图象知f(x)的图象与y=-x有三个交点,故可判断;④根据 
f(x1)+f(x2)
2
>f(
x1+x2
2
)
体现在图象是表示图象是下凹的,结合函数的图象进行判断即可.
解答:解:①f(-x)=
-x
1-|-x|
=-f(x)∴正确;
②当x>0时,f(x)=
x
1-x
=-1+
1
1-x
∈(0,+∞)∪(-∞,-1)
由①知当x<0时,f(x)=
x
x+1
∈(1,+∞)∪(-∞,0)
x=0时,f(x)=0
∴函数 f (x) 的值域为R,故正确;
③由图象知f(x)的图象与y=-x有三个交点,原点及第二、四象限各一个,
∴函数g(x)=f(x)+x有三个零点,故正确.
f(x1)+f(x2)
2
>f(
x1+x2
2
)
体现在图象是表示图象是下凹的,结合函数在(-∞,-1)上的图象,其是下凹的,故④正确.
故答案为:①②③④.
点评:本题综合考查函数的图象、性质及函数的零点,注意数形结合思想和函数与方程思想的应用.属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案