精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=2,G为△PAC的重心,E为PB的中点,F在BC上,且CF=2FB.
(1)求证:FG∥平面PAB;
(2)当FG⊥平面AEC时,求二面角P-CD-A的正切值.

(1)证明:连接CG交AP于M点
∵G为△PAC的重心,∴,∴FG∥BM,
又BM?平面PAB,∴FG∥平面PAB

(2)解:因为PA⊥平面ABCD,所以AD⊥CD,所以PD⊥CD,所以∠PDA即为二面角的平面角 

在直角梯形ABCD中,ADC=90°,AD∥BC,AB⊥AC,AB=AC=2,所以

连BM,连EM,
∵FG⊥平面AEC,∴FG⊥AE,即BM⊥AE,又EM=AB=1,
设EA∩BM=H,则EH=HA,
设PA=h,则EA=PB=,EH=EA=
∵Rt△AME~Rt△MHE,
∴EM2=EH•EA.

∴h=2,即

∴tan∠PAD==2

 


分析:(1)欲证FG∥平面PAB,根据直线与平面平行的判定定理可知只需证FG与平面PAB内一直线平行,连接CG延长交PA于M,连BM,根据比例可得FG∥BM,BM?平面PAB,FG?平面PAB,满足定理条件;
(2)连EM,根据二面角平面角的定义可知∠PDA二面角P-CD-A的平面角,在△PDA中求出此角的正切值即可.
点评:本题主要考查了空间中直线与直线之间的位置关系,以及直线与平面平行的判定,考查面面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案