精英家教网 > 高中数学 > 题目详情
若函数f(x)=loga(x+
a
x
-4)(a>0,且a≠1)的值域为R,求实数a的取值范围.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:对由于函数f(x)的值域是R,所以g(x)的值域?(0,+∞).然后分类讨论即可获得问题的解答.
解答: 解:设g(x)=x+
a
x
-4,
∵f(x)=loga(x+
a
x
-4)(a>0,且a≠1)的值域为R,
∴函数g(x)=x+
a
x
-4>0,
∴g(x)≥2
a
-4,
∴2
a
-4≤0,
解得a≤4
又a>0且a≠1
综上,实数a的取值范围(0,1)∪(1,4]
点评:本题考点是对数函数的值域与最值,考查对数函数的定义其定义域为全体实数的等价条件的理解,本题是一个易错题,应依据定义理清转化的依据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=
2
AB且E为PB的中点时,求AE与平面PDB所成的角的大小.
(Ⅲ)在(Ⅱ)的条件下,求二面角A-PB-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
3
2
2

(1)求抛物线C的方程;
(2)已知A,B是抛物线C上的两点,过A,B两点分别作抛物线C的切线,两条切线的交点为M,设线段AB的中点为N,证明:存在λ∈R,使得
MN
OF

(3)在(2)的条件下,若抛物线C的切线BM与y轴交于点R,直线AB两点的连线过点F,试求△ABR面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(0,-1)是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆中,称过焦点且垂直于长轴的直线被椭圆所截得的弦为椭圆的“通径”.已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其离心率为
1
2
,通径长为3.
(1)求椭圆C的方程;
(2)如图所示,过点F1的直线与椭圆交于A、B两点,I1、I2分别为△F1BF2、△F1AF2的内心,延长BF2与椭圆交于点M,求四边形F1I2F2I1的面积与△AF2B的面积的比值;
(3)在x轴上是否存在定点P,使得
PM
PB
为定值?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:sinα=
3
5
,cos(α+β)=-
4
5
,0<α<
π
2
,π<α+β<
3
2
π,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2
2
=1的左、右两个顶点分别为A、B.曲线M是以A、B两点为短轴端点,离心率为
2
2
的椭圆.设点P在第一象限且在曲线C上,直线AP与椭圆M相交于另一点T.
(Ⅰ)设点P、T的横坐标分别为x1、x2,证明:x1x2=1;
(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且
PA
PB
≤9,求S1•S2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(cosα,sinα),设
m
=
a
+t
b
(t为实数).
(Ⅰ)若α=
π
4
,求当|
m
|取最小值时实数t的值;
(Ⅱ)若
a
b
,问:是否存在实数t,使得向量
a
-
b
和向量
m
的夹角为
π
4
,若存在,请求出t的值;若不存在,请说明理由.
(Ⅲ)若
a
m
,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在解析几何中,平面中的直线方程和空间中的平面方程可进行类比.已知空间直角坐标系中平面的一般方程为Ax+By+Cz+D=0(A,B,C不同时为0),类比平面直角坐标系中的直线方程知识,若平面α与平面β平行,则平面α:mx+ny+4z+2=0与过点(1,0,0),(0,2,0),(0,0,3)的平面β之间的距离为
 

查看答案和解析>>

同步练习册答案