【题目】点为轴正半轴上一点, 两点关于轴对称,过点任作直线交抛物线于两点.(Ⅰ)求证: ;
(Ⅱ)若点的坐标为,且,试求所有满足条件的直线的解析式.
【答案】(1)见解析;(2).
【解析】试题分析:(1)利用抛物线的图象上点的坐标特征,待定系数法球函数解析式,根与系数的关系和相似三角形的判定与性质解答即可;
(2)利用(1)中已知与结论,继续由相似三角形,根与系数的关系、函数解析式求得结果.
试题解析:
解:(1)如图,分别过点作为轴的垂线,垂足分别为.设点的坐标为,则点的坐标为.设直线的函数解析式为,并设的坐标分别为.由得,于是,即.
于是.
又因为,所以.
因为,所以∽,故.
(2)设,不妨设,由(1)可知
,所以.
因为,所以∽.于是,即,
所以,由(1)中,即,所以,
于是可求得.将代入,得到点的坐标().
再将点的坐标代入,求得.所以解析式为.
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在区间上的函数,其中常数.
(1)若函数分别在区间上单调,试求的取值范围;
(2)当时,方程有四个不相等的实根.
①证明: ;
②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新一届班委会的7名成员有、、三人是上一届的成员,现对7名成员进行如下分工.
(Ⅰ)若正、副班长两职只能由、、三人选两人担任,则有多少种分工方案?
(Ⅱ)若、、三人不能再担任上一届各自的职务,则有多少种分工方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为(升).
(1)求关于的函数关系式;
(2)若 ,求当下潜速度取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;
(2)据此估计广告费用为12万元时的销售额约为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com