精英家教网 > 高中数学 > 题目详情
20.在△ABC中,面积S=$\sqrt{3}$,a=2$\sqrt{3}$,b=2,求边长c.

分析 利用三角形面积计算公式可得:sinC,再利用余弦定理即可得出.

解答 解:由$S=\frac{1}{2}ab$sinC=$\frac{1}{2}×2\sqrt{3}×2$sinC=$\sqrt{3}$,解得sinC=$\frac{1}{2}$.
∵C∈(0,π),∴C=$\frac{π}{6}$或$\frac{5π}{6}$.
∴c2=a2+b2-2abcosC=4或28,
解得c=2或2$\sqrt{7}$.

点评 本题考查了三角形面积计算公式、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x+2|-|x-1|.
(1)试求f(x)的值域;
(2)设g(x)=$\frac{{a{x^2}-3x+3}}{x}$(a>0),若对任意s∈[1,+∞),t∈[0,+∞),恒有g(s)≥f(t)成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中,$\overrightarrow{i}$=(1,0,0),$\overrightarrow{j}$=(0,1,0),$\overrightarrow{k}$=(0,0,1),则与$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$所成角都相等的单位向量为(  )
A.(1,1,1)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)
C.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,AO⊥平面BOC,∠OAB=30°,△AOC与△AOB全等,且二面角B-AO-C是直二面角,动点P在线段AB上,则CP与平面AOB所成角的正切的最大值为(  )
A.1B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角的余弦值为$\frac{1}{3}$,且4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),则实数t为(  )
A.4B.-4C.$\frac{4}{9}$D.-$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.当x>0时.求y=$\frac{x}{4{x}^{2}+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.经调查统计,在某十字路中红亮起时排队等候的车辆数及相应概率如下:
排队车辆数0123≥4
概率x0.30.30.20.1
则该十字路口红灯亮起时至多有2辆车排队等候的概率是(  )
A.0.7B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx-1.
(1)求使f(x)≥0成立的x的取值集合;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,已知A为锐角,a=3$\sqrt{3}$,c=6,f(A)是函数f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2x-1的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案